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Abstract. In this paper, we will propose an efficient and reliable heuristic algorithm for minimiz-
ing and maximizing the sum of three linear fractional functions over a polytope. These problems
are typical nonconvex minimization problems of practical as well as theoretical importance. This
algorithm uses a primal-dual parametric simplex algorithm to solve a subproblem in which the value
of one linear function is fixed. A subdivision scheme is employed in the space of this linear function
to obtain an approximate optimal solution of the original problem. It turns out that this algorithm is
much more efficient and usually generates a better solution than existing algorithms. Also, we will
develop a similar algorithm for minimizing the product of three linear fractional functions.
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1. Introduction

A number of special purpose algorithms have been developed in the last decade
for solving a class of nonconvex minimization problems by exploiting their special
structures. Readers are referred to such examples in recent books [7,12].

The purpose of this article is to propose an efficient and reliable heuristic al-
gorithm for minimizing and maximizing the sum ofp(6 3) linear fractional func-
tions over a polytope:∣∣∣∣∣∣∣

minimize
p∑
j=1

dTj x + dj0

cTj x + cj0

subject to x ∈ X,
(1.1)

and ∣∣∣∣∣∣∣
maximize

p∑
j=1

dTj x + dj0

cTj x + cj0

subject to x ∈ X,
(1.2)
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wherecj , dj ∈ Rn, cj0, dj0 ∈ R1, j = 1, . . . , p andX is a set defined by a system
of linear equalities and inequalities. Problems (1.1) and (1.2) will be called degree-
p linear fractional programming problems. These problems have application in
multi-stage stochastic shipping problem [1] and multi-objective bond portfolio op-
timization problems [9,16]. Also, there exist a number of mathematical studies on
fractional programming problems; see [3,5,19].

Let us briefly discuss a classical example proposed by Almogy and Levin [1]. A
ship must make an ordered tour aroundN ports, each of which has cargo available
for shipping to the remaining ports to be visited. The amounts of available cargo
at each port are independent random variables and the objective of the shipping
company is to maximize the expected value of the net profit per unit time which is
defined as a linear fractional function of the cargo to be loaded and unloaded.

Almogy and Levin [1] showed that the problem can be posed as (1.2) whenN =
2. To see this, letg0(x) be a linear fractional function wherex is a vector of cargo
to be loaded at port 1 given the vectoru of available cargo. Let us assume that the
amount of available cargo at port 2 is either one of the vectorsuk, k = 1, . . . , K.
Let gk(xk) be the linear fractional function associated withuk. The expected value
of the net profit per unit time is represented as follows:

g(x)+
K∑
k=1

pkgk(x
k),

wherepk is the probability of occurrence ofuk. The problem is therefore the
maximization of degreeK + 1 linear fractional functions under appropriate linear
constraints on(x, x1, . . . , xK).

Whenp = 1, the problem (1.1) and (1.2) are well known linear fractional
programming problems for which an efficient simplex-type algorithm has been
developed by Charnes and Cooper [4] in 1962. In fact, the objective function is both
quasi-convex and quasi-concave in this case. Whenp = 2, the objective function is
no longer quasi-convex. However, we can construct a parametric simplex algorithm
for (1.1) and (1.2) which can solve a large scale problem in an efficient manner
[14]. Also, Falk et al. [6] proposed an alternative algorithm for these problems.

Whenp > 3, the problem is much more difficult. The only exact algorithms,
to the authors’ knowledge, are the one proposed by Konno and Yamashita [15]
for problem (1.1) by adapting the algorithm for generalized convex multiplicative
programming problems [11] and the one proposed by Falk et al. [6].

It has been proved in [11] that the problem (1.1) is equivalent to the following
master problem:∣∣∣∣∣∣

minimize
∑p

j=1 {ξj(dTj x + dj0)
2+ ηj (cTj x + cj0)

−2}
subject to x ∈ X,

ξjηj > 1, ξj > 0, ηj > 0, j = 1, . . . , p,
(1.3)
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provided the following condition:

(dTj x + dj0)

(cTj x + cj0)
> 0, ∀x ∈ X, j = 1, . . . , p, (1.4)

is satisfied.
Let us denoteξ = (ξ1, . . . , ξp), η = (η1, . . . , ηp). When the value of(ξ, η) is

fixed, the objective function is convex and hence we can calculate

G(ξ, η) = min


p∑
j=1

[ξj (dTj x + dj0)
2+ ηj (cTj x + cj0)

−2] | x ∈ X
 , (1.5)

by standard algorithms for convex minimization problem. By using the fact that the
functionG(·, ·) is concave, we can construct an outer approximation algorithm as
in [15] or a branch and bound algorithm [11] for calculating the global minimum
of G(ξ, η) over the convex region:

S = {(ξ, η) | ξjηj > 1, ξj > 0, ηj > 0, j = 1, . . . , p}. (1.6)

It is reported in [15] that this outer approximation algorithm successfully solves
the problem (1.1) up top = 4. Unfortunately, the computation time sharply in-
creases asp increases. For example, the computation time forp = 3 is about 50
times more than the parametric simplex method requires forp = 2. Also, this
algorithm is not valid if the condition (1.4) is not satisfied.

The purpose of this paper is to propose an efficient heuristic algorithm for
solving degree-3 linear fractional programming problems (1.1) and (1.2). This al-
gorithm is an extension of the parametric simplex algorithm for degree-2 problems
[14]. Unlike the generalized convex multiplicative programming approach, we do
not have to assume the condition (1.4). This in turn implies that the new algorithm
is applicable to problem (1.2) as well as (1.1).

In the next section, we will discuss the new algorithm in detail. Section 3 will
be devoted to the results of the numerical experiments. It will be shown that the
new algorithm is at least 10 times faster than the existing approach [15]. Also,
this algorithm always generates a solution which is almost the same as the one
calculated by an exact algorithm [15]. Finally, in Section 4, we will extend this
algorithm to the minimization of the product of three linear fractional functions.

2. A parametric simplex algorithm for degree three linear fractional
programming problems

Let us consider the following degree-3 linear fractional programming problems:∣∣∣∣∣∣∣
minimize

dT1 x + d10

cT1 x + c10
+ d

2
1x + d20

cT2 x + c20
+ d

T
3 x + d30

cT3 x + c30

subject toAx = b, x > 0,

(2.1)
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maximize

dT1 x + d10

cT1 x + c10
+ d

2
1x + d20

cT2 x + c20
+ d

T
3 x + d30

cT3 x + c30

subject to Ax = b, x > 0,

(2.2)

wherecj , dj ∈ Rn, cj0, dj0 ∈ R1, j = 1, . . . , p, andA ∈ Rm×n, b ∈ Rm.

ASSUMPTION 1. The feasible region

X = {x ∈ Rn | Ax = b, x > 0} (2.3)

is non-empty and bounded. �

ASSUMPTION 2.cTj x + cj0 > 0, ∀x ∈ X, j = 1,2,3. �

In The following, we will concentrate on the algorithm for solving problem
(2.1) since the problem (2.2) can be converted to the problem (2.1) by reversing
the sign of the objective function.

The first step for solving (2.1) is to introduce the so-called Charnes-Cooper
transformation:

y0= 1/(cT3 x + c30),

y = xy0.
(2.4)

Then the problem (2.1) can be rewritten as follows:∣∣∣∣∣∣∣∣∣∣∣
minimize f (y, y0) =d

T
1 y + d10y0

cT1 y + c10y0
+ d

T
2 y + d20y0

cT2 y + c20y0
+ dT3 y + d30y0

subject to Ay − by0 = 0,
cT3 y + c30y0 = 1,
y > 0, y0 > 0.

(2.5)

PROPOSITION 1. The feasible setY of (2.5) is nonempty and bounded. Also, any
(y, y0) ∈ Y satisfiesy0 > 0.

Proof. Let x ∈ X. Theny = x/(cT3 x + c30), y0 = 1/(cT3 x + c30) gives a
feasible solution of (2.5). Therefore,Y 6= φ. If there exists(y,0) ∈ Y , then we
haveAy = 0, y > 0 which contradicts Assumption 1. Hence any(y, y0) ∈ Y
satisfiesy0 > 0. If Y is unbounded, then there exists(z, z0) 6= (0,0) satisfying the
condition

Az − bz0 = 0, cT3 z+ c30z0 = 0, z > 0, z0 > 0.

It follows from Assumption 1 thatz0 > 0. Therefore, there exists a nonnegative
vectorx such thatAx = b, cT3 x + c30 = 0, which is a contradiction to Assumption
2. �

PROPOSITION 2. The problem (2.5) has an optimal solution(y∗, y∗0). Also,x∗ =
y∗/y∗0 is an optimal solution of the problem (2.1).
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Proof.Sincey/y0 ∈ X for any(y, y0) ∈ Y , we have

cTj y + cj0y0 = (cTj y/y0 + cj0)y0 > 0, j = 1,2,

which implies that(dTj y + dj0y0)/(c
T
j y + cj0y0) is pseudomonotonic onY for

j = 1,2. Hence the objective function of (2.5) is continuous [2]. Therefore, from
Proposition 1 above, the problem (2.5) has an optimal solution. The last statement
of the Proposition follows directly from the definition (2.4). �

Let us define a new variable

η = dT3 y + d30y0, (2.6)

and let

ηmax= max{dT3 y + d30y0 | (y, y0) ∈ Y }, (2.7)

ηmin = min{dT3 y + d30y0 | (y, y0) ∈ Y }. (2.8)

Then the problem (2.5) is equivalent to∣∣∣∣∣∣∣∣∣∣∣
minimize

dT1 y + d10y0

cT1 y + c10y0
+ d

T
2 y + d20y0

cT2 y + c20y0
+ η

subject to (y, y0) ∈ Y,
dT3 y + d30y0 = η,
ηmin 6 η 6 ηmax.

(2.9)

We can assume without loss of generality that(dT3 , d30) is linearly independent of
the rows of(A,−b) and(cT3 , c30) sinceη is constant overY if otherwise.

For fixedη, the problem (2.9) is a degree - 2 linear fractional programming
problem:

P(η)

∣∣∣∣∣∣∣
minimize

pT1 z

qT1 z
+ p

T
2 z

qT2 z
+ η

subject to Ãz = b(η), z > 0,

(2.10)

where

z =
(
y

y0

)
, pj =

(
dj

dj0

)
, qj =

(
cj

cj0

)
, j = 1,2. (2.11)

Ã =
 A −b
cT3 c30

dT3 d30

 ,
 0

1
η

 . (2.12)
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The feasible set of (2.1), denoted byY (η), is a subset ofY ; hence, we have
qTj z > 0, ∀z ∈ Y (η). This enables one to apply Charnes-Cooper transformationl
once again by defining

v0= 1/qT2 z,
v = zv0.

The problem (2.10) reduces to

P(η)

∣∣∣∣∣∣∣∣∣∣∣
minimize

pT1 v

qT1 v
+ pT2 v + η

subject to Ãv − b(η)v0 = 0,
qT2 v = 1,
v > 0, v0 > 0.

(2.13)

PROPOSITION 3. The feasible set of (2.14) is nonempty and bounded.
Proof.We can apply the same argument as the proof of Proposition 1. �

By introducing another auxiliary variableξ = qT1 v, the problem (2.14) can be
represented as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1

ξ
pT1 v + pT2 v + η

subject to Ãv − b(η)v0 = 0,
qT2 v = 1,
qT1 v = ξ,
v > 0, v0 > 0,
ξmin(η) 6 ξ 6max (η),

(2.14)

where

ξmax(η) = max{qT1 v | Ãv − b(η)v0 = 0, qT2 v = 1, v > 0, v0 > 0}, (2.15)

ξmin(η) = min{qT1 v | Ãv − b(η)v0 = 0, qT2 v = 1, v > 0, v0 > 0}. (2.16)

An optimal solution of (2.5) is obtained by solvingP(η) for all η ∈ [ηmin, ηmax].
As discussed in detail in [14],P(η) can be solved by a primal-dual parametric

simplex method. In fact, letB(ξ0) be an optimal basis matrix of the problem (2.15)
for someξ0 ∈ [ξmin(η), ξmax(η)]. Then we can find an interval[ξ0, ξ0] in which
B(ξ0) remains optimal by noting

(i) primal feasibility condition

B−1(ξ0)

 0
1
ξ

 > 0⇒ ξ ∈ [ξP , ξP ],
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(ii) dual feasibility condition

1

ξ
p1N + p2N > 0⇒ ξ ∈ [ξD, ξD],

wherep1N andp2N are the reduced cost corresponding top1 andp2.
Therefore, we obtain an interval

[ξ, ξ ] ≡ [ξP , ξP ] ∩ [ξD, ξD],
in which the basisB(ξ0) remains optimal (Note thatξ0 ∈ [ξ, ξ ]). Therefore, we can
generate a sequence of intervals in which a certain basis matrix remains optimal by
applying a series of primal or dual simplex iterations. The value of the objective
function is given by[

1

ξ
pT1B + pT2B

]
B−1(ξ0)

 0
1
ξ

 ,
in each interval, wherep1B andp2B represent the basic part of the vectorsp1 and
p2 associated withB(ξ0). Therefore, we can calculate the optimal value ofP(η) in
an analytic manner; See [14] for details.

THEOREM 1. Let F(η) be the minimal value of the objective function of the
problemP(η). ThenF(η) is continuous on the interval(ηmin, ηmax).

Proof.See Appendix A. �

The problem therefore reduces to the minimization of a continuous function
F(·) of a single variable. However, this function need not be differentiable nor
convex. Thus we will apply a primitive subdivision scheme to be described below.

Let us generate a finite number of grid pointsηk, k = 0,1, . . . , K:

ηmin = η0 < η1 < η2 < . . . ηK = ηmax,

and letfk andxk be, respectively, the optimal value and an optimal solution of
P(ηk). If ε ≡ max{ηk+1 − ηk | k = 0,1, . . . , K − 1} is small enough, thenf ∗ =
min[fk | k = 0,1, . . . , K] and the associated solutionx∗ is expected to provide a
good approximation of a global optimal solution of the problem (2.5).

ALGORITHM PD. PRIMAL-DUAL PARAMETRIC SIMPLEX ALGORITHM

Step 1.Calculateηmin andηmax by solving a pair of linear programs (2.7) and (2.8)
and generate a finite number of grid pointsηk , k = 0,1, . . . , K satisfying the
condition

ηmin = η0 < η1 < η2 < . . . < ηK = ηmax.
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Step 2.For k = 0,1, . . . , K, solveP(ηk) by primal dual simplex method. Letfk
be the minimal value of the objective function ofP(ηk).
Step 3.Let f ∗k = min{fk | k = 0,1, . . . , K} and letz∗ be an optimal solution of
the problemP(η∗k ).
Step 4.Stop.x∗ = y∗/y∗0 is an approximate optimal solution of (2.1). �

3. Computational results

We tested the primal-dual parametric simplex algorithm (PD) and compared it with
the convex multiplicative programming algorithm (CM) proposed in [15].

We generated test problems of the following form:∣∣∣∣∣∣∣∣
minimize

3∑
j=1

dTj x + dj0

cTj x + cj0

subject toAx 6 b, x > 0,

(3.1)

where the elements ofA ∈ Rm×n, cj , d ∈ Rn, cj0, dj0 ∈ R1, j = 1,2,3 are
randomly generated in the unit interval[0.0,1.0]. Also, the elements ofb are
randomly generated in the interval[0.1,1.0] to satisfy the condition (1.4). Table
1 shows the computation time in seconds for CM algorithm and PD algorithm. The
convergence conditionε = 10−5 was chosen for CM algorithm. Also, we divided
the interval[ηmin, ηmax] into 100 subintervals of equal length in PD algorithm. We
solved ten test problems of each size and listed the average computation time and
its standard deviation. All test problems satisfy the conditionηmax− ηmin 6 1.0, so
thatε < 0.01 for 100 subdivisions.

Table I. Computation time

(m,n)

(5,10) (10,20) (15,30) (20,40)

CM Ave. CPU time (sec) 6.76 47.01 221.58 (535.14)

S.D. (sec) 5.54 38.93 102.22 (245.98)

PD Ave. CPU time (sec) 1.65 11.27 46.21 152.81

SD (sec) 0.25 1.96 6.98 23.24

Comparison was terminated at (m,n)=(20,40) since some test problems could
not be solved within ten minutes by CM algorithm. (The data for (20,40) in the
brackets show the average and standard deviation of eight test problems which
were solved in ten minutes). We see from this that the computation time of PD
algorithm is about five times less than that of CM. This is due to the fact that the
number of pivots of PD algorithm is relatively stable. A remarkable difference is
that the standard deviation of PD is at least ten times less than CM. We conclude
from this that PD algorithm depends primarily on the size of the problem and the
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Table II. Quality of the solution

(m,n)

(5,10) (10,20) (15,30) (20,40)

Ave. (f ∗
PD

/f ∗
CM

) 0.9995 0.9709 0.9878 1.0005

Table III. Improvement of the objective value (%)

(m,n)

K1×K2×K3 (5,10) (10,20) (15,30) (20,40)

40× 30× 30 0.177 0.143 0.078 0.092

subdivision parameterK, while CM algorithm depends on both the size and the
data.

Table 2 shows the quality of the calculated solutions. This table shows the ratio
of the average of the magnitude of the optimal valuef ∗PD, f ∗CM obtained by al-
gorithm PD and CM. Surprisingly enough, the optimal value calculated by PD is
usually better than those obtained by CM algorithm, sometimes by a factor of 2%.
This means that PD algorithm with 100 subdivision detects a better solution than
CM algorithm whenε = 10−5. At the same time, this table shows that the quality
of the solution of PD algorithm is almost the same or even a bit worse than those of
CM algorithm as the size of the problem increases. To obtain a definite conclusion,
however, we need to conduct more experiments on large scale problems.

Table 3 shows the computational result of PD for alternative subdivision schemes,
where(K1 ×K2×K3) denotes the following three stage subdivision:

Stage 1.Subdivide[ηmin, ηmax] intoK1 subintervals of the same length.

Stage 2.Divide the subintervals to the left and right of the best grid point obtained
in Stage 1 intoK2 subintervals.

Stage 3.Divide the subintervals to the left and right of the best grid point obtained
in Stage 2 intoK3 subintervals.

This scheme is based upon the observation that the minimal valueF(η) of P(η)
usually takes the form as depicted in Figure 1.

The calculated optimal solution was the same as(100,0,0) for almost all prob-
lems and all subdivision schemes. Computation time of PD algorithm depends
linearly on the number of subdivisions. The computation time of the parametric
simplex algorithm for fixed value ofη is no more than 10%–20% of the time
required for calculatingξmin(η). Therefore, the total amount of computation time
for solving (2.9) for 100 subdivision scheme is more or less the same as solving 100
linear programs of the same size. Also, the computation time can be substantially
reduced by using the fact that the starting solution forη = ηk+1 can be recovered
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Figure 1. Minimal value ofP(η).

Table IV. Computation time for alternative subdivision

(m,n)

K1×K2×K3 (5,10) (10,20) (15,30) (20,40)

100× 0× 0 1.65 11.27 46.21 152.81

30× 10× 10 0.84 6.14 25.10 79.12

20× 10× 10 0.53 4.53 17.42 53.43

by dual simplex iteration (Note that the problemP(ηk+1) andP(ηk) differs by a
single constraint, namelydT3 y + d30y0 = η).

Table 5 shows the computational result for lartger problems where(100,0,0)
subdivision scheme was employed. These results are consistent with the observa-
tion above.

Let us note that test problems are all dense. Sparse problems may be solved
much faster.

Table V. Computation time for larger problems

(m,n)

Ave. CPU time (sec) 22.8 118.5 284.3

SD (sec) 5.3 25.3 65.3
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4. Extensions

The idea used for solving problem (2.1) can be applied to the minimization of the
product of three linear fractional functions:∣∣∣∣∣∣∣

minimize
dT1 x + d10

cT1 x + c10
· d

T
2 x + d20

cT2 x + c20
· d

T
3 x + d30

cT3 x + c30

subject to x ∈ X,
(4.1)

if the following conditions are satisfied,

cTj x + cj0 > 0, dTj x + dj0 > 0, ∀x ∈ X, j = 1,2,3. (4.2)

The problem (4.1) is equivalent to∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize η
dT1 x + d10

cT1 x + c10
· d

T
2 x + d20

cT2 x + c20

subject to x ∈ X,
d3x + d30

cT3 x + c30
= η,

ηmin 6 η 6 ηmax,

(4.3)

where

ηmax= max{(dT3 x + d30)/(c
T
3 x + c30) | x ∈ X}, (4.4)

ηmin = min{(dT3 x + d30)/(c
T
3 x + c30) | x ∈ X}. (4.5)

Let us define the subproblem

Q(η)

∣∣∣∣∣∣∣∣∣
minimize

dT1 x + d10

cT1 x + c10
· d

T
2 x + d20

cT2 x + c20

subject to (d3− ηc3)
T x = ηc30− d30,

x ∈ X,
(4.6)

for fixed η ∈ (ηmin, ηmax). As shown in [17],Q(η) can be solved in an efficient
manner by a branch and bound algorithm by noting the equivalence ofQ(η) and
the problem∣∣∣∣∣∣∣∣∣

minimize ξ
dT1 x + d10

cT1 x + c10
+ 1

ξ

dT2 x + d20

cT2 x + c20

subject to (d3− ηc3)
T x = ηc30− d30,

ξ > 0, x ∈ X,
(4.7)

under condition (4.2). Whenξ is fixed, this problem can be solved by using the
parametric simplex algorithm for degree-2 linear fractional programming problem.
It has been demonstrated in [13] that the problem (4.7) can be solved by a branch
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and bound method. Therefore, we can construct a heuristic algorithm for solving
(4.6) by discretizing the interval[ηmin, ηmax] in an appropriate manner.

It is expected that this algorithm can be used as an efficient and reliable heur-
istic.

Appendix

A. Appendix: Proof of Theorem 1

The result can be proved by applying Theorem 1.17 of the recent book [18]. How-
ever, we will provide an elementary proof below for completeness.

Let us denote the feasible set of the problemP(η) as follows:

Z(η) = {z|Dz = d, gT z = η, z > 0},
where

D =
(
A −b
cT3 c30

)
, g =

(
d3

d30

)
,

andg is linearly independent of rows ofD. Let

F(η) = min{f (z)|z ∈ Z(η)},
where

f (z) = pT1 z

qT1 z
+ p

T
2 z

qT2 z
+ η.

We will show thatF(η) is continuous on(ηmin, ηmax).
Let δ > 0 and η1, η2 ∈ (ηmin, ηmax) such thatη2− η1 = ε, whereε > 0 is some

constant. Also, letz1, z2 be, respectively the optimal solution ofP(η1) andP(η2).
We will first show that there exist a pointv1 ∈ Z(η2) such that‖v1 − z1‖ 6 αε

whereα is some positive constant. Let

z∗ = argmax{gT z|Dz = d, z > 0},
and let

α = max

{ ‖z∗ − z‖
gT (z∗ − z)

∣∣∣∣z ∈ Z(η1)

}
.

Let v1 be the intersection of the line segment[z1, z∗] andZ(η2); see Figure A.1.
Thenv1− z1 = c(z∗ − z1) for some constantc. Therefore

‖v1− z1‖
gT (v1− z1)

= ‖z
∗ − z1‖

gT (z∗ − z1)
6 α.

Hence

‖v1 − z1‖αgT (v1− z1) = αε,
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Figure A.1.

by noting thatgT v1 = η2, gT z1 = η1 andη2 − η1 = ε. Similarly, there exists
v2 ∈ Z(η1) such that‖v2− z2‖ 6 αε.

By continuity off (z), we have

|f (v1)− f (z1)| 6 δ, |f (v2)− f (z2)| 6 δ,
for small enoughε. By definition,

f (z1) 6 f (v2), f (z2) 6 f (v1).

Hence,

f (z1)− f (z2) = f (z1)− f (v2)+ f (v2)− f (z2)

6 f (v2)− f (z2) < δ,

f (z1)− f (z2) = f (z1)− f (v1)+ f (v1)− f (z2)

> f (z1)− f (v1) > −δ.
Therefore, we have

|F(η1)− F(η2)| < |f (z1)− f (z2)| < δ,
as desired. 2
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